skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Borland, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a solution to image-based cell counting with dot annotations for both 2D and 3D cases. Current approaches have two major limitations: 1) inability to provide precise locations when cells overlap; and 2) reliance on costly labeled data. To address these two issues, we first adopt the inverse distance kernel, which yields separable density maps for better localization. Second, we take advantage of unlabeled data by self-supervised learning with focal consistency loss, which we propose for our pixel-wise task. These two contributions complement each other. Together, our framework compares favorably against stateof- the-art methods, including methods using full annotations on 2D and 3D benchmarks, while significantly reducing the amount of labeled data needed for training. In addition, we provide a tool to expedite the labeling process for dot annotations. Finally, we make the source code and labeling tool publicly available. 
    more » « less
    Free, publicly-accessible full text available February 21, 2026
  2. Exploratory data analysis of high-dimensional datasets is a crucial task for which visual analytics can be especially useful. However, the ad hoc nature of exploratory analysis can also lead users to draw incorrect causal inferences. Previous studies have demonstrated this risk and shown that integrating counterfactual concepts within visual analytics systems can improve users’ understanding of visualized data. However, effectively leveraging counterfactual concepts can be challenging, with only bespoke implementations found in prior work. Moreover, it can require expertise in both counterfactual subset analysis and visualization to implement the functionalities practically. This paper aims to help address these challenges in two ways. First, we propose an operator-based conceptual model for the use of counterfactuals that is informed by prior work in visualization research. Second, we contribute the Co-op library, an open and extensible reference implementation of this model that can support the integration of counterfactual-based subset computation with visualization systems. To evaluate the effectiveness and generalizability of Co-op, the library was used to construct two different visual analytics systems each supporting a distinct user workflow. In addition, expert interviews were conducted with professional visual analytics researchers and engineers to gain more insights regarding how Co-op could be leveraged. Finally, informed in part by these evaluation results, we distil a set of key design implications for effectively leveraging counterfactuals in future visualization systems. 
    more » « less
  3. Counterfactuals – expressing what might have been true under different circumstances – have been widely applied in statistics and machine learning to help understand causal relationships. More recently, counterfactuals have begun to emerge as a technique being applied within visualization research. However, it remains unclear to what extent counterfactuals can aid with visual data communication. In this paper, we primarily focus on assessing the quality of users’ understanding of data when provided with counterfactual visualizations. We propose a preliminary model of causality comprehension by connecting theories from causal inference and visual data communication. Leveraging this model, we conducted an empirical study to explore how counterfactuals can improve users’ understanding of data in static visualizations. Our results indicate that visualizing counterfactuals had a positive impact on participants’ interpretations of causal relations within datasets. These results motivate a discussion of how to more effectively incorporate counterfactuals into data visualizations. 
    more » « less
  4. null (Ed.)